
Exact Matching & CS Fundamentals
Michael Schatz

Bioinformatics Lecture 1
Quantitative Biology 2010

Computer Science & Computational Biology

"Computer science is no more about computers than astronomy is about telescopes."
 Edsger Dijkstra

•  Computer Science = Science of Computation
•  Solving problems, designing & building systems
•  Thinking recursively about data, across levels of abstraction
•  Reasoning that your methods are fast & correct

•  Computer Science >> Computer Programming
•  Computers are very, very dumb, but we can instruct them

•  Build complex systems out of simple components
•  They will perfectly & repeatedly execute instructions forever

•  CompBio = Thinking Computationally about Biology
•  Processing: Make more powerful instruments, analyze results
•  Designing & Understanding: protocols, procedures, systems

Sequence Alignment Applications
•  A very common problem in computational biology is to find

occurrences of one sequence in another sequence

–  Genome Assembly
–  Gene Finding
–  Comparative Genomics
–  Functional analysis of proteins
–  Motif discovery
–  SNP analysis
–  Phylogenetic analysis
–  Primer Design
–  Personal Genomics
–  …

Exact Matching Overview
Where is GATTACA in the human genome?

BLAST, MAQ, ZOOM,
RMAP, CloudBurst

Seed-and-extend

Hash Table
(>15 GB)

MUMmer, MUMmerGPU

Tree Searching

Suffix Tree
 (>51 GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

Searching for GATTACA
•  Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

•  Strategy 1: Brute Force

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
–  If we double genome or query size, takes twice as long
–  If we double both, takes 4 times as long

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT
–  1 in 16,384 should be GATTACA
–  E=(n-m+1)/(4m) [183,105 expected occurrences]

Brute Force in Matlab

query = 'GATTACA';!
genome = 'TGATTACAGATTACC';!

nummatches=0;!

% At every possible offset!
for offset=1:length(genome)-length(query)+1!

!% Do all of the characters match?!
!if (genome(offset:offset+length(query)-1) == query)!
!! !disp(['Match at offset ', num2str(offset)])!
!! !nummatches = nummatches+1;!
!else!
!! !%Uncomment to see every non-match!
!! !%disp(['No match at offset ', num2str(offset)])!
!end!

end!

disp(['Found ', num2str(nummatches),' matches of ', query, ' in genome of length ',
num2str(length(genome))])!

disp(['Expected number of occurrences: ', num2str((length(genome)-length(query)+1)/
(4^length(query)))])!

Brute Force Reflections
 Why check every position?

–  GATTACA can't start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

–  Improve runtime to O(n + m) [3B + 7]
•  If we double both, it just takes twice as long
•  Knuth-Morris-Pratt, 1977
•  Boyer-Moyer, 1977, 1991

–  For one-off scans, this is the best we can do (optimal performance)
•  We have to read every character of the genome, and every character of the query
•  For short queries, runtime is dominated by the length of the genome

2. Suffix Arrays
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)
–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B nucleotides?]

Binary Search in Matlab
%% create our sorted list of 100 numbers!
seq=1:100;!

%% seq=sort(floor(rand(100)*100));!
query=33;!

%% initialize search range!
lo=1;!
hi=length(seq);!
steps=0;!

%% search!
while (lo<=hi)!
 steps = steps+1;!

 mid=floor((lo+hi)/2);!
 middle=seq(mid);!
 disp(['Step ', num2str(steps), ' checking seq[', num2str(mid), ']=', num2str(middle)])!

 if (query == middle)!
 disp(['Found at ', num2str(mid), ' in ', num2str(steps), ' steps'])!
 break!
 elseif (query < middle)!

 disp(['less than ', num2str(middle)])!
 hi=mid-1;!
 else!

 disp(['greater than ', num2str(middle)])!
 lo=mid+1;!
 end!
end!

Suffix Array Construction
•  Searching the array is very fast, but it takes time to construct

•  This time will be amortized over many, many searches
•  Run it once "overnight" and save it away for all future queries

•  How do we store the suffix array?
•  Explicitly storing all n strings is not feasible

For human genome S = 9 billion billion characters

•  Instead use implicit representation
•  Keep 1 copy of the genome, and a list of sorted offsets
•  Storing 3 billion offsets requires a big server (12GB)

•  Build a separate index for each chromosome

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

Sorting
Sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis
•  Selection Sort (Input: list of n numbers)

 for pos = 1 to n
 // find the smallest element in [pos, n]
 smallest = pos
 for check = pos+1 to n

 if (list[check] < list[smallest]): smallest = check

 // move the smallest element to the front
 tmp = list[smallest]
 list[pos] = list[smallest]
 list[smallest] = tmp

•  Analysis

•  Outer loop: pos = 1 to n
•  Inner loop: check = pos to n
•  Running time: Outer * Inner = O(n2) [9 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

Picking the Median
•  What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

…+ 9in/10i

n/10 + 9n/10 < = >

... + 81n/100 < = >

< = … + 6561n/10000 >

< = > ... + 729n/1000

< = > … + 59049n/100000

< = > … + 531441n/1000000

< = > … + 4782969n/10000000

Randomized Quicksort
•  90/10 split runtime analysis

•  If we randomly pick a pivot, we will get at least a
90/10 split with very high probability
– Everything is okay as long as we always slice off a

fraction of the list

[Challenge Question: What happens if we slice 1 element]

Find smallest x s.t.

QuickSort in Matlab

sort(seq) !

•  The goal of software engineering is to build libraries of
correct reusable functions that implement higher level
ideas
–  Build complex software out of simple components
–  Software tends to be 90% plumbing, 10% research
–  You still need to know how they work

•  Matlab requires an explicit representation of the strings

Break

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

6,13,14,19,29,31,39,50,61,63,64,78

for(i = 1 to 100) { range[i] = 0; }
for(i = 1 to n) { range[list[i]] = 1; }
for(i = 1 to l00) { if (range[i] == 1){print i}} [3B instead of 94B]

3. Suffix Trees
Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…

CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
•  1 Leaf ($) for each suffix, path-label to leaf spells the suffix
•  Nodes have at least 2 and at most 5 children (A,C,G,T,$)

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GATTACA

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GATTACA
•  Matches at position 2

WalkTree
 cur = ST.Root; qrypos = 0;
 while (cur)
 // check for partial matches
 …
 // walk the tree
 edge = cur.getEdge(q[qrypos]); edgepos=0
 dist = matchstrings(edge, edgepos, qry, qrypos)
 if (qrypos+dist == length(qry))
 print "end-to-end match"
 else if (dist == length(edge))
 cur=cur.getNode(edge[0]); qrypos+=dist
 else
 print "no match"

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GACTACA

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GACTACA
•  Fell off tree – no match

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  ATTAC

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  ATTAC
•  Matches at 3 and 10

•  Query Lookup in 2 phases:
1.  Walk along edges to find matches
2.  Walk subtree to find positions

DepthFirstPrint(Node cur)
if cur.isLeaf

 print cur.pos
else

 foreach child in cur.children
 DepthFirstPrint(child)

[What is the running time of DFP
 => How many nodes does the tree have?]

Suffix Tree Properties & Applications
Properties
•  Number of Nodes/Edges: O(n)
•  Tree Size: O(n)
•  Max Depth: O(n)
•  Construction Time: O(n)

•  Uses suffix links to jump between nodes without rechecking
•  Tricky to implement, prove efficiency

Applications
•  Sorting all suffixes: O(n) [HOW?]
•  Check for query: O(m)
•  Find all z occurrences of a query O(m + z)
•  Find maximal exact matches O(m)
•  Longest common substring O(m)

•  Used for many string algorithms in linear time
•  Many can be implemented on suffix arrays using a little extra work

4. Hashing
•  Where is GATTACA in the human genome?

–  Build an inverted index (table) of every kmer in the genome

AAAAAAA

AAAAAAC

AAAAAAG

…

GATTAAT

GATTACA

GATTACC

…

TTTTTTG

TTTTTTT

2

5000

32000000

…

…

…

…

•  How do we access the table?
–  We can only use numbers to index

•  table[GATTACA] <- error, does not compute

–  Encode sequences as numbers
•  Easy: A = 110, C = 210, G = 310, T = 410

–  GATTACA = 314412110

•  Smart: A = 002, C = 012, G = 102, T = 112
–  GATTACA = 100011110001002 = 915610

–  Running time
•  Construction: O(n)
•  Lookup: O(1) + O(z)
•  Sorts the genome mers in linear time

Hash Tables and Hash Functions
•  Number of possible sequences of length k = 4k

–  47 = 16,384 (easy to store)
–  420 = 1,099,511,627,776 (impossible to directly store in RAM)

•  There are only 3B 20-mers in the genome
⇒  Even if we could build this table, 99.7% will be empty
⇒  But we don't know which cells are empty until we try

•  Hash Function: hash(n) -> h
•  Maps a number n in [0,R] to h in [0,H] where H << R

•  More than one n will have the same h
•  A good hash function evenly distributes the values

–  R/H have the same hash value
•  A really good hash function also spreads out the values

•  Pr(hash(n)==hash(m)) = 1/H
•  A common (decent) choice is hash(n) = n mod H

Hash Table Lookup
•  By construction, multiple keys have the same hash value

–  Store elements with the same key in a bucket chained together
–  Looking up a value scans the entire bucket

•  Slows down the search as a function of the hash table load
•  Warning: This complexity is usually hidden in the hash table code

http://en.wikipedia.org/wiki/Hash_table

Variable Length Queries
•  Where are GATTACA and GATTACCA in the human genome?

•  s = min(length of all queries)
•  Build an inverted index of all s-mers (seeds) in the genome

•  GATTACA => 2, 5000, 32000000, …
•  GATTACC => 5500, 10101, 1000000, …

•  Seed-and-extend to find end-to-end exact matches
•  Check every occurrence of the qry seed (first s characters)

•  ~1 in 4 are GATTACCA, 1 in 4 are GATTACCC, etc
•  The specificity of the seed depends on length(q) & s

•  Works best if max(length) =~ min(length)
•  Works best if e-value(m) is << 1

Exact Matching Review
•  E-value depends on length of genome and inversely on query length

•  E = (n-m+1)/4m

BLAST, MAQ, ZOOM,
RMAP, CloudBurst

Seed-and-extend

Hash Table
(>15 GB)

MUMmer, MUMmerGPU

Tree Walking & DFS

Suffix Tree
 (>51 GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

Algorithms Summary
•  Algorithms choreograph the dance of data inside the machine

•  Algorithms add provable precision to your method
•  A smarter algorithm can solve the same problem with much less work

•  Techniques
•  Binary search: Fast lookup in any sorted list
•  Divide-and-conquer: Split a hard problem into an easier problem
•  Recursion: Solve a problem using a function of itself
•  Randomization: Avoid the demon
•  Hashing: Storing sets across a huge range of values
•  Indexing: Focus on the search on the important parts

•  Different indexing schemes have different space/time features

•  Data Structures
•  Primitives: Integers, Numbers, Strings
•  Lists / Arrays / Multi-dimensional arrays
•  Trees
•  Hash Table

Algorithmic Complexity

What is the runtime as a function of the input size?

Next Time
•  In-exact alignment

–  Smith & Waterman (1981) Identification of Common Molecular Subsequences. J. of
Molecular Biology. 147:195-197.

•  Sequence Homology
–  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment

search tool. J of Molecular Biology. 215 (3): 403–410.

•  Whole Genome Alignment
–  A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg

(1999) Alignment of Whole Genomes. Nucleic Acids Research (27):11 2369-2376.

•  Short Read Mapping
–  Langmead B, Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome
Biology. 10:R25.

